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This paper examines two biological models of anticancer activity, cytotoxicity and hollow fiber (HF) activity,
for chemotherapeutic agents evaluated as part of the National Cancer Institute’s (NCI’s) drug screening
effort. Our analysis proposes strategies to globally assess compounds tested in the NCI’s 60-cell (NCI60) in
vitro anticancer screen in terms of structural features, biological activity, target specificity, and mechanism
of action by data integration via our self-organizing maps of structural and biological response patterns. We
have built statistical models to predict compound potency and HF activity based on physicochemical
properties. Our results find that it is the combination of different structural properties that determines a
compound’s biological activity. A direct correlation is also found between compound potency and specificity,
indicating that specific targeting, rather than promiscuous poisoning, gives rise to potency. Finally, we offer
a strategy to exploit this relationship for future mining of novel anticancer candidates.

Introduction

The foundations for our present understanding of cancer
began over five decades ago with the observation that tumor-
derived cell lines proliferate indefinitely,1 and since that time
this result has served as the basis for establishing numerous in
vitro anticancer drug discovery and testing initiatives.2 Notable
among these endeavors is the massive anticancer screening effort
of the National Cancer Institute (NCIa), launched in 1990, that
profiles small molecule compounds for their cytotoxicity and
proliferation inhibition on more than 60 cultured tumor cell lines
(NCI60), representative of the major histologic types of cancer
prevalent in the United States.3,4 Initially the NCI’s tumor
screening panel was widely viewed as a black box providing
phenotypic readouts limited to growth and viability profiles.
Over time, however, this as well as other cell-based screens
have established themselves as multifaceted tools offering the
potential to assess relevant details about intracellular target
specificity, target-related cytotoxicity, metabolic stability, and
bioavailability. Building on this history, latest generation
screening cell lines have been developed by numerous labs that
are transgenic and engineered to study specific targets and/or
inhibitors.5,6

While scientific and technological advancements have en-
hanced our understanding of the molecular physiology of cancer,
most cancer chemotherapy protocols have been established
empirically, without the aid of a modern perspective.7 A

compelling feature of cell-based screening is that tumor cell
lines exhibit diverse sensitivities to chemotherapeutic agents,
and it is this feature that has been proposed as a basis for rational
drug selection and therapy design.2,8 An equally exciting facet
of this observation is that the capacity to associate molecular
structures with sensitivity as a means to predict tumor-cell
responsiveness is more possible today than ever before.

This paper proposes a novel analysis of chemotherapeutic
agents based on an evaluation of cytotoxic screening data and
hollow fiber screening data obtained within the NCI’s anticancer
discovery effort. Our analysis presents a strategy for relating
structural features within chemical classes as a basis for cellular
responsiveness in the screening and hollow fiber data. Our
perspective will be derived by integrating our recent global
assessments of the NCI’s screening data with evaluations about
activity in the NCI’s hollow fiber assay. Our primary goal is to
utilize the information resources within the NCI, derived over
the past 15 years, combined with more recent functional
genomic technologies, to facilitate the understanding of chem-
istries associated with effective agents and use this information
to propose the development of investigative strategies to discover
new potential oncologic agents.

Since its inception in 1990,∼85 000 compounds have been
tested against the NCI60 for in vitro anticancer activity.9,10These
compounds are part of the NCI chemical database, which
contains samples of compounds from both organic synthesis
and natural product extracts, provided by academic, government,
and other nonprofit and industrial laboratories, collected by the
NCI since 1955 for testing in anticancer, and more recently anti-
AIDS, assays of various types. The NCI database is one of the
largest and structurally most diverse databases, containing
∼250 000 compounds,>90% of which are unique, having
minimal overlap with most commercial databases.11,12The NCI60

is composed of immortalized cancer cell lines reflecting diverse
cell lineages, as they are derived from lung, renal, colorectal,
ovary, breast, prostate, central nervous system, melanoma, and
hematological malignancies. The 50% cancer cell growth
inhibition concentration (GI50) for any particular cell line is an
index of cytotoxicity or cytostasis. Within the complete set of
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screening compounds, GI50 measures for over 40 000 of them
are publicly available. GI50 growth patterns across the 60 tumor
cells have been found to be an information-rich resource for
establishing a compound’s mechanism of action (MOA).13-19

Moreover, this in vitro cell line model has been shown to be
predictive of the phase II clinical trial performance of cancer
drugs for certain cancer types.20

The NCI also developed the hollow fiber (HF) model in 1995
to be employed as a routine preliminary screening assay for
identification of in vivo activity of potential anticancer com-
pounds.21 The HF assay assesses the pharmacologic capacity
of compounds to reach two physiologic compartments, intra-
peritoneal (ip) and subcutaneous (sc), within the nude mouse
and is a practical means of quantifying viable tumor cell mass
in an animal model. The HF assay has been shown to have
good correlation with in vivo xenograft activity.22-24 A recent
evaluation of the prognostic value of this assay indicates that
good HF activity is predictive of good activity in NCI’s
xenograft models.22 This connection is particularly relevant for
anticancer drug discovery, since the human xenograft model
has been found useful in postpredicting the phase II clinical
trial performance of certain cancer drugs in non-small-cell lung
and ovarian cancers.20 Here we focus our attention on the HF
data, under the assumption that the HF model can serve as a
valuable pipeline for selecting compound entry into more costly
in vivo models.22 To date, about 3000 compounds have been
screened in the HF assay. A strong correlation between potency
in the 60-cell line screen and activity in the HF assay has also
been reported.24 The lines of evidence connecting the initial cell-
based screening data to phase II outcome through HF and
xenograft follow-up assays serve as the primary motivation for
joint reassessment of the tumor screen and HF data sets.

We have previously organized the GI50 data into self-
organizing maps (SOMs).17,25,26SOM clustering of the GI50 data
segregates compounds into nine major response categories:
mitosis (M), membrane function (N), nucleic acid metabolism
(S), metabolic stress and cell survival (Q), kinases/phosphatases
and oxidative stress (P), and four uncharacterized regions R, F,
J, and V.17-19 In addition, we have clustered the Daylight
fingerprints (bit vectors of length 2048) derived from the
structures of these same screened compounds using the SOM
method to group structurally similar compounds. Here we will
develop strategies to combine structural features and physico-
chemical parameters with GI50 and HF activity data of all
screened compounds, with the aid of our GI50 and structural
SOMs, to achieve a global perspective on connections between
compound structure, biological activity, target specificity, and
MOA. Various quantitative structure-activity relationship
(QSAR) studies have been previously carried out on small
subsets of potential anticancer agents screened in the NCI60.27-29

Those efforts were based primarily on the pioneering work by
Hansch and Leo as a model for correlating different physico-
chemical parameters with biological activities.30-32 Following
this earlier work, we propose to extend the analysis to include
HF data and GI50 data for all screened compounds. In this study,
we will evaluate the feasibility of deriving valid statistical
models from structural/physicochemical parameters to predict
the potency of compounds in the 60-cell screen as well as their
in vivo HF activity. Each model will be validated through
rigorous statistical procedures. As we are aware of the limitations
brought by the large data size and large structural variations
therein,33 we do not expect the models to appear as accurate as
what one can obtain from a small, focused set of compounds
with only minor structural variations;34 however, as a proof of

concept, we will show that models derived from large data sets
are statistically valid and have excellent predictive power for
proposing novel compounds with potential anticancer activity.
Furthermore, since these models are built from large data sets,
the trends captured are statistically more robust and can be
applied to general populations of compounds.

Results

Structural-Activity Assessment of All Screened Com-
pounds. Several common molecular descriptors including
ALogP, Lipinski score, molecular weight (MW), hydrogen bond
acceptors (HBA), hydrogen bond donors (HBD), parent atom
count (PAC), rotatable bonds (RB), polar surface area (PSA),
and parent molecular weight (PMW) for∼43 000 publicly
accessible compounds that have been screened in the NCI60 for
GI50 were calculated and exported from Leadscope. Each
compound is also encoded in a vector (fingerprint) of length
27 000 in Leadscope, where each element represents a structural
feature of the compound, which can be a molecular fragment,
a functional group, or a certain bond or atom type. If a feature
is present in a compound, then the element is a nonzero number,
which is the number count of that feature in the compound; the
element is zero if the feature is absent in the compound. The
number of unique features (multiple occurrences of the same
feature are counted as one) present in a compound can be used
as a measure of structural complexity, and this number (Lead-
scope unique feature count or LSUFC) as well as the total
number of features (Leadscope feature count or LSFC) are also
calculated for each of the 43 000 compounds and included as
additional molecular descriptors.

The activity measures of the screened compounds are based
on the arithmetic mean of the 60 GI50 measurements (negative
log of 50% growth inhibition concentration) for all tumor cells.
(Throughout the paper, we will use “GI50” in place of -log-
(GI50) for convenience.) Since approximately 2.2% of the
compounds have a mean GI50 of e4 and 2.6% have a mean
GI50 of g7, we arbitrarily selected these values as cutoffs for
active and inactive compounds, respectively. The distributions
of each molecular descriptor within the active and inactive
compounds, as well as for all 43 000 compounds, are shown in
Figure 1, and the mean values for each compound group are
listed in Table 1. All average descriptor values are higher in
the active compound set than the inactive compound set, and
this difference is statistically significant (t-test, p < 0.05).
LSUFC shows the greatest difference between the active and
inactive compound sets, followed by PAC and MW, and the
number of RB shows the least difference, albeit significant. The
average descriptor values for the inactive compounds are
generally close to the overall compound averages.

Structural Characterization of the GI 50 SOM. Our GI50

SOM segregates compounds into clusters and clusters into
regions. These divisions define compounds that share similar
GI50 response patterns and, putatively, mechanisms of action
(MOA). Taking our prior analysis one step further, by introduc-
ing a means of relating compound molecular features to MOA,
we have chosen to examine the structure-activity relationship
within every SOM region, each representing different sets of
MOAs and possibly unique sets of molecular descriptors. For
compounds within each node (SOM cluster), the average
descriptor values and mean GI50 are calculated. These values
are then used to generate the region averages for SOM regions
M, N, P, Q, R, S, F, J, and V. The distributions of each
molecular descriptor value and mean GI50 across all nine SOM
regions are displayed in Figure 2. Clearly, these values vary
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for each descriptor, as well as for compound activity (mean
GI50), for compounds clustered in different SOM regions,
showing that distinctions exist, not only in terms of putative
MOA, but also in molecular features. These nine regions are
then ranked according to their descriptor and mean GI50 values,
such that the region having the smallest value is assigned a rank
of one and the largest value is assigned the highest rank of nine.
These rankings are listed in Table 2. A general correlation is

evident between region descriptor values and compound potency
for most regions.

The M-region, which contains compounds that act by
interfering with mitosis, such as tubulin active agents, has the
highest ranking in every molecular descriptor (except for
ALogP) and has the most potent compounds overall. This is
consistent with our earlier finding that large and more complex
molecules tend to be more potent. The M-region contains many

Figure 1. Distributions of common molecular descriptors ALogP, Lipinski score, molecular weight (MW), hydrogen bond acceptors (HBA),
hydrogen bond donors (HBD), parent atom count (PAC), rotatable bonds (RB), polar surface area (PSA), parent molecular weight (PMW), and
Leadscope unique feature count (LSUFC) for compounds that are active (mean GI50 g 7) and inactive (mean GI50 e 4) and for all 43 000 compounds
screened in the NCI60. The y-axis shows the compound fractions. All average descriptor values are significantly higher (t-test,p < 0.05) in the
active compound set than the inactive compound set, and the average descriptor values for the inactive compounds are close to the overall compound
averages.
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compounds that are of natural origins, such as taxanes and vinca
alkaloids, which are generally large and contain many functional
groups. Furthermore, the observation that these molecules are
clustered in the M-region may imply that large and functional
molecules are more likely to be active against the mitotic cell
cycle or, alternatively, that compounds active against mitosis
are more likely to be potent. Compounds in regions S and P
are second and third, respectively, in terms of their molecular
descriptor rankings, as they share many descriptor values except
for ALogP, which has its lowest ranking in S and its third
highest ranking in P. In terms of potency as measured by mean
GI50, however, regions S and P show a large difference, S being
the second most potent region and P only showing medium

potency when compared to other regions. The S-region contains
compounds that exert their activity mainly through interfering
with DNA synthesis and metabolism, such as alkylators,
intercalators, and DNA/RNA antimetabolites. The low lipophi-
licity and high functionality of the S-region compounds may
have contributed to their ability to interact with DNA, which
would account for their high potency. The P-region, on the other
hand, contains compounds postulated to interfere with kinase/
phosphatase activity, such as CDK inhibitors, compounds that
can cause oxidative stress, and other compounds with unknown
MOAs. A reasonable amount of lipophilicity may be required
for these activities, which are mostly not as lethal as DNA
targeting. Even though the overall potency of P-region com-
pounds is only average, evidence exists that highly potent
compounds can still be found in the P-region, since this region
contains the largest number of compounds that exhibit the most
diverse MOAs. By contrast, compounds that cause oxidative
stress are generally not potent, whereas kinase-targeting agents,
such as staurosporine, can be very potent.

Compounds in regions J, N, and V also have mediocre
descriptor rankings and medium potencies. The N-region
contains putative membrane disruptive agents and the MOAs
of compounds in the other two regions, J and V, are mostly
unknown. The R-region appears to be special, having the least
number of hydrogen bond donors and acceptors and the smallest
polar surface area, but the highest lipophilicity (ALogP), and it
is the second least potent region. Region R has agents that can
effectively disrupt the mitochondrial respiration chain and thus
oxidative phosphorylation. The lipophilic aspect of these agents
may contribute to their activity in mitochondrial membrane and
toward proteins involved in the respiration chain. However, the
MOA for most of the R-region compounds is largely unknown.
Region F, the MOA of which is still unknown, is the least potent

Table 1. Average Molecular Descriptor Values for Compounds that Are
Active (mean GI50 g 7) and Inactive (mean GI50 E 4) and for All
43 000 Compounds Screened in the NCI60

a

descriptor

all compds
with measured

GI50 GI50E 4 GI50g 7
[(GI50 g 7) -
(GI50 E 4)]/all

LSUFC 55.18 52.56 84.84 0.59
parent atom count 27.53 25.78 40.18 0.52
molecular weight 408.6 383.6 581.2 0.48
parent molecular weight 397.9 373.4 567.1 0.49
hydrogen bond acceptors 3.91 4.823 7.12 0.59
Lipinski score 0.50 0.52 1.09 1.15
ALogP 3.54 2.01 3.00 0.28
polar surface area 81.01 105.6 136.9 0.39
hydrogen bond donors 1.36 2.01 2.72 0.52
rotatable bonds 5.76 6.05 7.65 0.28

a The table also lists the difference between the active and inactive
compounds in each descriptor relative to the global averages. Differences
in descriptor values between the active and inactive compound sets are all
statistically significant (t-test, p < 0.05), with LSUFC being the most
significant (p ) 9.92 × 10-57), followed by PAC and MW, and the RB
showing the least significant difference (p ) 2.30× 10-6).

Figure 2. Distributions of molecular descriptor values and mean GI50 across all nine GI50 SOM regions. For compounds within each SOM cluster,
the average descriptor values and mean GI50 are calculated. These values are then used to generate the region averages for SOM regions M, N, P,
Q, R, S, F, J, and V. The figure shows theZ-score normalized values for each descriptor, by subtracting the mean and then dividing by the standard
deviation of values across the nine regions. Clearly, these values vary for each descriptor as well as for compound activity (mean GI50), showing
that distinctions exist between compounds clustered in different SOM regions, not only in terms of putative MOA but also in molecular features.
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region with generally lower than average parameter rankings.
This is consistent with our earlier observation that small and
simple molecules are less likely to be potent. The Q-region,
however, appears to be the most peculiar, because it has the
lowest rankings in almost all descriptors but is also the third
most potent region following regions M and S. This may be
explained by the fact that the Q-region has the largest content
of metal-containing compounds, especially heavy metal com-
pounds, and other electrophiles that can readily form covalent
bonds with protein targets.18,19These compounds are unique in
the sense that, even though they do not have many hydrogen
bond donors or acceptors or other structural features (Q ranks
the lowest in the number of features), they can still be very
potent because they interact with protein targets differently from
other organic molecules by covalently modifying their targets
instead of forming hydrogen bonds. Another possible reason is
that many molecular descriptors for metal-containing compounds
cannot be accurately calculated. Taken together, we have shown
that compounds segregated by their MOA also exhibit distinct
physiochemical properties, indicating a differential impact of
these properties on cancer cell growth.

Table 3 lists the correlations and significance levels (p-values)
calculated between each molecular descriptor and mean GI50

using SOM node average values. It is not surprising that all
but one parameter correlates positively, feature counts and
molecular weight being the strongest, with mean GI50, whereas
ALogP has the weakest and negative correlation. These
parameters are not all independent, because a large molecule is
more likely to have a large value in all size-related molecular

descriptors (e.g., MW, PAC, HBD, HBA, RB, PSA) and a large
Lipinski score as well, because the chance of a large molecule
violating the Lipinski rules will be increased. In fact, ALogP is
the only descriptor that is not largely determined by the size of
the molecule and is, therefore, relatively independent of the other
descriptors. Correlations between descriptors calculated using
SOM region average values show that all the other descriptors
are highly correlated with each other and with mean GI50, having
an average correlation coefficient (r) of 0.86 and a minimumr
of 0.66. The descriptor that has the best correlation with ALogP
is polar surface area, which correlates negatively with ALogP,
as expected, but only has a correlation ofr ) -0.36. The
correlations between ALogP and the other descriptors are even
weaker, with both positive and negative values. Therefore, these
descriptors appear to contain only two major, independent
components, molecule size and lipophilicity (ALogP).

As mentioned earlier, the structure-activity relationship in
the Q-region appears to be distinctly different from the other
regions. Excluding this region, the sum of parameter ranks
appears to be a very good predictor of region potency, having
a correlation with mean GI50 rank of r ) 0.85, which means
that >70% of the variation in the GI50 ranks can be explained
by the variation in the molecular descriptor ranks. With the
inclusion of the Q-region, however, the correlation with GI50 is
reduced to 0.49, which means that only 24% of the variation in
GI50 ranks can be explained. Correlations of each molecular
descriptor with mean GI50 are calculated for each SOM region
and are shown in Figure 3 together with the correlations
calculated using all SOM nodes (shown as black histograms).
Most regions display similar trends in their structure-activity
relations, which are also similar to the global trend exhibited
when all compounds in the SOM are taken into consideration;
that is, most parameters are positively correlated with mean GI50,
with ALogP and the number of rotatable bonds showing the
largest variations across different regions. The Q-region (cyan
histograms in Figure 3), however, is a clear exception. The
molecular descriptor-GI50 correlation results within the Q-
region are listed in the last two columns of Table 3. The most
notable difference, when compared to correlations using all
SOM nodes, is that the descriptors for structural feature counts,
hydrogen bond donors and acceptors, and PSA are negatively
correlated with mean GI50 in the Q-region. As discussed earlier,
the Q-region contains compounds that are distinct from the other
regions, being characterized by unique features (heavy metals,
reactive electrophillic groups, etc.) that make them exhibit
different behavior in their structure-activity relationships.18 A
detailed feature assessment of the compounds in the Q-region
is not within the scope of this study. Negative correlations with
mean GI50 are also observed for some descriptors in the

Table 2. Ranks of Molecular Descriptor and Mean GI50 Values for the Nine SOM Regionsa

SOM
region ALogP Lipinski MW HBA HBD PAC RB PSA PMW LSUFC

sum of
ranks

mean
GI50

M 6 9 9 9 9 9 9 9 9 9 87 9
S 1 7 8 8 8 7 8 8 7 8 70 8
Q 2 1 1 2 1 1 1 2 1 1 13 7
N 8 3 6 3 5 6 4 3 6 6 50 6
V 4 6 4 6 7 4 3 6 3 5 48 5
P 7 8 7 7 6 8 7 7 8 7 72 4
J 5 4 5 5 3 3 5 5 5 3 43 3
R 9 5 3 1 2 5 6 1 4 4 40 2
F 3 2 2 4 4 2 2 4 2 2 27 1

a The region with the smallest parameter value is assigned a rank of one and the largest value is assigned the highest rank of nine. A positive correlation
is evident between region descriptor ranks and compound potency for most regions except for the Q-region.

Table 3. Correlations (r) and Significance Levels (p-values) Calculated
between Each Molecular Descriptor and Mean GI50 Using SOM Node
Average Valuesa

SOM Q-region

descriptor r p r p

LSUFC 0.38 8.09× 10-47 -0.27 9.15× 10-4

molecular weight 0.35 5.26× 10-39 0.36 9.16× 10-6

LSFC 0.34 3.65× 10-38 -0.21 1.02× 10-2

parent molecular weight 0.32 5.34× 10-34 0.32 1.02× 10-4

parent atom count 0.32 1.19× 10-32 0.07 4.11× 10-1

hydrogen bond acceptors 0.31 1.42× 10-30 -0.21 1.07× 10-2

polar surface area 0.28 7.21× 10-25 -0.18 2.77× 10-2

Lipinski score 0.25 6.76× 10-21 0.16 6.00× 10-2

hydrogen bond donors 0.24 8.43× 10-20 -0.23 6.11× 10-3

rotatable bonds 0.13 2.82× 10-6 0.14 9.83× 10-2

ALogP -0.11 1.03× 10-4 0.15 7.32× 10-2

a The first two columns list the correlations calculated using all SOM
nodes. All but one parameter correlates positively with mean GI50, with
feature counts and MW having the strongest and ALogP having the weakest
and negative correlation. The last two columns list the correlations calculated
using only nodes within the Q-region. Notably, the parameters for structural
feature counts, hydrogen bond donors and acceptors, and PSA are negatively
correlated with mean GI50 in the Q-region, in contrast to the results obtained
with the entire SOM.
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V-region; most of them, however, are not statistically significant.
No significant correlation between molecular descriptors and
mean GI50 is observed for compounds in the J-region. Taken
as a whole, the results obtained here indicate that the relationship
between molecular descriptors and compound activity is, at least
in part, dependent on compound type and MOA.

Activity Prediction: GI 50 Modeling. Our analysis finds that
many molecular descriptors show good correlations with
compound activity, specifically, mean GI50, raising the pos-
sibility for predicting compound activity with a suitable
combination of only a few molecular descriptors. Our goal is
to build a global statistical model that will enable us to predict
the activity of any compound with a known 2D structure, from
which our set of molecular descriptors can be calculated. Such
a model can be used as a prescreening tool to filter compounds
in large databases and select a smaller set of compounds with
good predicted activity for further testing and validation. Limited
by the data size and quality as well as large structural variations
between compounds, the model is not expected to be highly
accurate; however, a valid model with good predictive power
that allows quick activity prediction for large sets of compounds
would suffice for our purpose.

The final GI50 prediction model included 108 descriptors that
are statistically significant, the combination of which can be
used to estimate compound potency (see Methods section for
details). Descriptors such as MW, HBD, certain structural
features containing heteroatoms (N, P, O, S, halides, etc.), and
ADME properties PSA, BBB (blood-brain barrier), solubility,
and hepatoxicity are among the descriptors that have the most
significant influence on GI50. (All model parameters can be
found in the Supporting Information.) The GI50 values predicted
by the model are highly correlated with the measured GI50

values, as shown in Figure 4a (see Methods section for details).
This correlation is only slightly weaker in the testing (data not
used to build the model) than the training data set (data used to
build the model), indicating that this model can be applied to a
new data set without significant loss of accuracy. Figure 4b
shows the receiver operating characteristic (ROC) curve of the

model, which exhibits the characteristics of a valid and
predictive model (see Methods section for details). The sensitiv-
ity and specificity of the model in selecting truly potent
compounds are maximized when the mean GI50 value is around
6. The probability of finding active compounds (measured GI50

g 6) within the compound set predicted as active (predicted
GI50 g 6) is 64%, which is significantly improved when
compared to the 6% probability of finding active compounds
by random chance. Moreover, the average predicted GI50 value
for a set of known anticancer drugs (collected by Leadscope)
is shown higher than that of all screened compounds (4.9 vs
4.7; t-test, p ) 1.26 × 10-5). These results indicate that the
biological activity, such as GI50, of a compound can be related
to a combination of its physiochemical properties.

Activity Prediction: Hollow Fiber Activity Modeling.
About 3000 compounds have been tested in the in vivo HF
model developed by the NCI for antitumor effects.22 In the
standard assay, 12 human tumor cell lines growing in polyvi-
nylidene fluoride “hollow fibers”, representing six different
histologies, selected owing to the expected behavior of their
corresponding xenografts, are placed in both ip and sc compart-
ments of nude mice. Compounds can then be dosed at intervals
over a 4-5 day period, and then the fibers are removed from
the mice, and the effect of compound action on the proliferation
of tumor cells in the HF is assessed by colorimetric assays.
Agents are considered to have a HF effect if there is a 50% or
greater reduction in net cell growth compared with the controls.
The hollow fiber assay is scored by assigning 2 points to a
compound for each fiber in which the compound has shown
such an effect. The score is typically recorded as the score in
the ip fibers plus the score in the sc fibers. The greater the
number of fibers demonstrating evidence of an antiproliferative
effect, the greater the likelihood that a compound will display
activity against xenografts. The criteria for activity in the
standard HF assay were based, and statistically validated, on
the scores achieved by clinically used anticancer agents.
Historically, the criterion for compounds to be considered for

Figure 3. Structure-activity relationships for compounds clustered in each SOM region: correlations of each molecular descriptor with mean
GI50. Top histograms: Correlations calculated for each SOM region using only nodes within that region. Bottom histograms: Correlations calculated
using all SOM nodes. For most regions, as well as the entire SOM, the majority of descriptors are positively correlated with mean GI50, with the
exception of the Q-region (cyan histograms), where the descriptors for structural feature counts, hydrogen bond donors and acceptors, and PSA are
negatively correlated with mean GI50.
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follow-up xenograft testing was a total HF (ip+ sc) score of
20 or greater.

Using the total HF score for each compound (in cases where
a compound has been tested repeatedly in the hollow fiber assay
and thus has multiple scores, we pick the maximum score as
its HF score), the 3119 compounds tested have a mean optimal
HF score of 11.7 with a standard deviation (SD) of 9.8.
Approximately 17% of the compounds have a HF score of 20
(mean+ SD) or greater, which we will consider as HF active,
and 14% have a HF score of 2 (mean- SD) or less, which we
will consider as HF inactive. A compound’s HF score has been
found to be significantly correlated with its mean GI50 (r )
0.31,p ) 4.60× 10-61), indicating that a compound showing
potency in the 60-cell screen is more likely to be active in the
HF assay. Analogous to our earlier effort to build a model with
molecular descriptors to predict a compound’s mean GI50, here
we propose a similar model using the same descriptors to predict
a compound’s HF activity. Mean GI50 is included as a parameter
as well.

The final HF activity prediction model (see Table 4) kept 20
structural descriptors that significantly contribute to a com-
pound’s HF activity. Mean GI50, not surprisingly, is the most
significant parameter. The structural descriptor HBD; informa-
tion-content descriptors, such as the entropy of vertex adjacency
matrix (V_ADJ_mag) and the entropy of edge distance matrix
(E_DIST_mag); ADME properties, such as absorption, protein
plasma binding (PPB), and AlogP; and certain structural features
and atom types, as well as the number of unique structural
features (LSUFC), are also among the most significant molecular
descriptors influencing compound activity in the HF assay.
Dependent variable random permutation tests show that the HF
model is predictive and statistically significant (p < 0.01; see
Methods section for details). The predicted HF scores show
strong correlation with the measured HF scores in both the
training and testing data sets, as shown in Figure 5a, indicating
that the model has good predictive power and is applicable to
other data sets. Figure 5b shows the ROC curve of the model,
which exhibits the characteristics of a valid and predictive
model. The area under the ROC curve is maximized when the
HF score is approximately between 20 and 25, where maximum

sensitivity and specificity are achieved. The 60% probability
of finding HF active compounds (measured HF scoreg20) in
the compound set predicted as active (predicted HF scoreg20)
is significantly improved when compared to the 13% probability
of finding active compounds by random chance. Using this
model, we have predicted the HF activity for more than 27 000
compounds with available GI50 data, and over 600 of them are

Figure 4. Validation of the GI50 prediction model built with Cerius2 fast descriptors. (a) Plots of predicted GI50 values against measured GI50

values for the training (data used to build the model) and testing (data not used to build the model) sets, yieldingr2 ) 0.77 for the training set and
cross-validationr2 ) 0.67 for the testing set. (b) Receiver operating characteristic (ROC) curve of the model (see Methods section for details). The
ROC curve exhibits the characteristics of a valid and predictive model. The area under the ROC curve is maximized when the mean GI50 value is
around 6, where maximum sensitivity and specificity are achieved. The probability of finding active compounds (measured GI50 g 6) within the
compound set predicted as active (predicted GI50 g 6) is 64%, which is significantly improved when compared to the 6% probability of finding
active compounds by random chance.

Table 4. HF Activity Prediction Model Built with Cerius2 Fast
Descriptors, LSUFC, and Mean GI50 as Independent Predictors (see
Methods section for details)a

descriptor
parameter
estimate

standard
error p

mean GI50 2.61 0.24 <1 × 10-4

Hbond donor 1.21 0.20 <1 × 10-4

V_ADJ_mag -0.03 4.86× 10-3 <1 × 10-4

E_DIST_mag 4.01× 10-4 7.54× 10-5 <1 × 10-4

ADME_Absorption_T2_2 D -0.15 0.03 <1 × 10-4

S_dssS -13.58 3.02 <1 × 10-4

Atype_S_109 -21.73 5.42 <1 × 10-4

ADME_Absorption_Leve l_2D 1.33 0.33 <1 × 10-4

CHI_V_3_CH 21.26 5.74 2.00× 10-4

LSUFC 0.04 0.01 4.00× 10-4

Atype_Cl_90 -2.82 0.81 5.00× 10-4

ADMET_PPB -1.01 0.30 7.00× 10-4

ADME_Unknown_AlogP 98 -1.89 0.57 1.00× 10-3

Atype_O_57 -1.14 0.39 3.70× 10-3

Atype_F_81 9.32 3.60 9.80× 10-3

Atype_C_17 0.80 0.33 1.41× 10-2

Atype_C_28 0.54 0.23 1.89× 10-2

Atype_N_68 1.06 0.46 2.26× 10-2

Atype_H_49 0.85 0.38 2.37× 10-2

Atype_C_43 2.41 1.08 2.57× 10-2

Atype_C_34 0.73 0.38 5.45× 10-2

S_ddC 8.21 4.40 6.22× 10-2

S_sNH2 -0.20 0.11 6.86× 10-2

S_sCH3 0.11 0.07 8.72× 10-2

model intercept -0.63 1.55 6.86× 10-1

a The table lists the parameter estimates, standard errors, and the
significance levels of for all parameters significant atp < 0.15 and the
intercept of this linear regression model. Mean GI50; the structural descriptor
HBD; information-content descriptors V_ADJ_mag and E_DIST_mag;
ADME properties, such as absorption, protein plasma binding (PPB), and
AlogP; certain structural features and atom types; and the number of unique
structural features (LSUFC) are among the most significant predictors of
HF activity.
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predicted to be active (HF scoreg20) in the HF assay. It is
noteworthy that the average predicted HF score for a set of
known anticancer drugs (collected by Leadscope) is significantly
higher than that of all screened compounds (14.2 vs 8.9;t-test,
p ) 2.96× 10-23).

Our model can be used to virtually screen compounds with
GI50 data available and test those predicted to be active in the
HF assay. For compounds that have not been tested in the NCI60,
our original model, built using GI50 as a parameter for prediction,
is then not applicable. Even though GI50 is found to be the best-
correlated parameter for HF activity, other descriptors are also
shown to contribute significantly to a compound’s HF activity;
therefore, building a separate model for HF activity without
using GI50 as a predictor can be achieved. The HF activity
prediction model built using the same set of data, excluding
GI50, and similar procedures, is slightly inferior but still
statistically significant (p < 0.01) based on randomization tests
(see Methods section for details). In this model 24 descriptors
are shown to significantly contribute to HF activity (All model

parameters can be found in the Supporting Information). The
few extra descriptors included by this GI50 absent model are
presumably needed to compensate for its loss as a model
parameter. Nevertheless, the results suggest that GI50 measure-
ments can be supplanted by other molecular descriptors without
causing a significant loss in the reliability and predictive power
of the model. The most significant parameters influencing
compound HF activity again include the number of unique
structural features (LSUFC) and ADME properties such as
solubility, absorption, and protein plasma binding (PPB). The
training and cross-validation results for the model are shown
in Figure 5c. The correlation between the predicted and
experimentally measured HF scores is still strong but consider-
ably lower than what obtained for the HF model using GI50 as
a parameter. Figure 5d shows the ROC curve of the GI50-free
model. Despite the area under the ROC curve being less than
that for the original model (Figure 5b), the curve still exhibits
the characteristics of a valid predictive model, indicating a HF
score of around 20 as the optimal activity cut off. HF active

Figure 5. Validation of the hollow fiber (HF) activity prediction models built with Cerius2 fast descriptors. (a) Model built with GI50 as an
additional predictor. Plots of predicted HF scores against measured HF scores for the training (data used to build the model) and testing (data not
used to build the model) sets, yieldingr2 ) 0.78 for the training set and cross-validationr2 ) 0.61 for the testing set. (b) Receiver operating
characteristic (ROC) curve of the model built with GI50 as an additional predictor (see Methods section for details). The ROC curve exhibits the
characteristics of a valid and predictive model. The area under the ROC curve is maximized when the HF score is approximately between 20 and
25, where maximum sensitivity and specificity are achieved. The 60% probability of finding HF active compounds (measured HF scoreg 20) in
the compound set predicted as active is significantly improved when compared to the 13% probability of finding active compounds by random
chance. (c) Model built without using GI50 as an additional predictor. Plots of predicted HF scores values against measured HF scores for the
training (data used to build the model) and testing (data not used to build the model) sets, yieldingr2 ) 0.68 for the training set and cross-validation
r2 ) 0.49 for the testing set. (d) ROC curve of the model built without using GI50 as an additional predictor (see Methods section for details). The
ROC curve exhibits the characteristics of a valid and predictive model. The area under the ROC curve is maximized when the HF score is approximately
20, where maximum sensitivity and specificity are achieved. HF active compounds (measured HF scoreg20) are significantly enriched in the
compound set predicted as active when compared to the rest of the compounds (55% vs 14%). Both models are statistically valid and predictive.
The model built without using GI50 as an additional predictor is only slightly inferior.
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compounds (measured HF scoreg20) are significantly enriched
in the compound set predicted as active when compared to the
rest of the compounds (55% vs 14%). Our model predicts that
more than 1200 of the 43 000 public compounds screened in
the NCI60, most of which have not yet advanced to HF testing,
will be active in the HF assay (predicted HF scoreg20). Taken
together, our results show that biological activity in different
cancer models, either in vitro or in vivo, can be modeled on
the basis of compound physiochemical properties.

Compound Structural Similarity, Target Specificity, and
HF Activity Relationships. Our results demonstrate that
compound activity or potency is closely related to and predict-
able by, even though not perfectly, a set of structure-based
molecular descriptors. We have also observed that compounds
having different MOAs or targets may exhibit different structure-
activity dependencies. As others have observed, structurally
similar compounds may or may not share the same MOA. We
would consider structurally similar compounds that also exhibit
similar activity (not in terms of potency but in terms of targets)
as being specific and otherwise as being promiscuous. Building
from this premise, we will examine the relationship between
structural features, activity or potency, and specificity, in a global
sense. The virtual selection of potent compounds that are also
specific would be of high interest in choosing compounds for
further testing.

SOM clustering of the 43 000 screened compounds using
Daylight fingerprints (DYFP) segregated the compounds into
1334 clusters (nodes). Compounds clustered in the same node
on the DYFP SOM are considered structurally similar. The
degree of similarity in GI50 activity for structurally similar
compounds can be defined as the average correlation coefficient
(intranoder) between the GI50 data vectors of these compounds.
Within-noder-values can then be used as a measure of similarity
in compound MOA, i.e., target specificity. Average values of
some common molecular descriptors and compound mean GI50’s
are calculated for each DYFP SOM cluster as well. Correlations
between these parameters and intranoder are listed in Table 5.
Interestingly, the descriptor found to be the most significantly
correlated (r ) 0.32,p ) 4.36× 10-33) with target specificity
(intranoder) is compound potency (intranode mean GI50), the
correlation of which is much stronger than that of the second
most significantly correlated descriptor, MW (r ) 0.15, p )
3.63× 10-8). Other structural descriptors such as LSFC, PAC,
LSUFC, RB, HBA, and PSA also show some degree of
correlation with target specificity, though much weaker. None-

theless, the underlying implication that target specificity might
be one of the important factors contributing to compound
potency is very intriguing. Since mean GI50 has been found to
be one of the most important determinants of HF activity (Table
4), it was reasonable to determine the correlation strength
between target specificity and HF activity. Using the average
intranode HF scores for DYFP SOM nodes that contain
compounds with measured HF activity finds a weak correlation
between target specificity and HF activity (significant atp <
0.10).

Compounds that are both potent and target specific are
generally of great interest. Our observation that target-specific
compounds are more likely to be potent, or vice versa, can be
exploited for mining novel anticancer candidates. Here we
propose a strategy to find compounds that have a consistent
structure-activity (CSA) relationship, that is, structurally similar
compounds that also show similar GI50 patterns (i.e., target
specificity), through the combined use of the structural (DYFP)
and activity (GI50) SOMs. A selection criterion is used such
that, for each node in the DYFP SOM that contains at least
five compounds that are also clustered in the same node on the
GI50 SOM, these compounds are included in the CSA set. This
procedure identifies 1541 compounds occupying 167 GI50 SOM
nodes and 153 DYFP SOM nodes (i.e., structural classes). The
average potency for the CSA compounds (mean GI50 ) 5.5) is
significantly larger (t-test,p < 10-10) than an average screened
compound (mean GI50 ) 4.7). The average HF score of the
176 CSA compounds with measured HF activity is 13.1, slightly
higher than the average of all compounds tested in the HF assay
(mean HF) 11.7). This difference, however, is only significant
at the 90% confidence level (t-test,p ) 0.06).

HF activities for all screened compounds including the 1541
CSA compounds are predicted using the prediction model built
from molecular descriptors and mean GI50 (Table 4). Of the
CSA compounds, 138 are predicted to be active (HFg 20) in
the HF assay. The average predicted HF activity for the CSA
compound set (mean predicted HF) 11.7) is significantly larger
than that of an average screened compound (mean predicted
HF ) 8.8) (t-test,p ) 3.29× 10-51). The number of predicted
active compounds (9% with HFg 20) is also significantly
enriched in the CSA set compared to a random set of screened
compounds (2% with HFg 20) (Fisher’s exact,p ) 1.12 ×
10-21). The predicted HF activity for the 176 CSA compounds
that have been tested in the HF assay correlates well with their
measured activity (r ) 0.39,p ) 7.08× 10-8). These results
show that compounds selected on the basis of target specificity,
e.g., the CSA compounds, are more likely to be potent and active
in the HF assay.

To compare the CSA compounds, in terms of structural
descriptors, with compounds showing different levels of HF
activity, several common descriptor values as well as mean GI50

are averaged for HF active (HFg 20), inactive (HFe 2), and
the CSA compounds. Each parameter is thenZ-score normal-
ized, and theZx scores, wherex ) HF active, HF inactive, and
CSA, for ALogP, Lipinski score, MW, HBA, HBD, PAC, RB,
PSA, PMW, LSUFC, and mean GI50, are depicted in Figure 6a
(see Figure 6 caption for details). A compound set with positive
Zx scores has above average parameter values and a compound
set with negativeZx scores has below average parameter values.
Consistent with earlier findings, the HF active compounds have
above average values for all structural descriptors (except for
ALogP), and the HF inactive compounds have below average
values for all structural descriptors. Moreover, all three com-
pound sets show higher potency than an average screened

Table 5. Correlations of Molecular Descriptors and Mean GI50 with
Target Specificitya

descriptor r p

mean GI50 0.32 4.36× 10-33

molecular weight 0.15 3.63× 10-8

parent molecular weight 0.13 3.07× 10-6

LSFC 0.09 9.12× 10-4

parent atom count 0.09 1.52× 10-3

LSUFC 0.08 2.64× 10-3

rotatable bonds 0.08 3.47× 10-3

hydrogen bond acceptors 0.08 4.89× 10-3

polar surface area 0.06 2.06× 10-2

Lipinski score 0.05 8.04× 10-2

ALogP -0.03 2.26× 10-1

hydrogen bond donors 0.01 8.38× 10-1

a Within-node (DYFP SOM) GI50 response pattern correlation strength
(intra-noder) is used as a measure of target specificity for structurally similar
compounds. Correlations are calculated using node average values of
common molecular descriptors and mean GI50 within each DYFP SOM
cluster. Potency (intranode mean GI50) is found to be the parameter that is
the most significantly correlated (r ) 0.32,p ) 4.36× 10-33) with target
specificity, followed by MW (r ) 0.15,p ) 3.63× 10-8).
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compound, as theirZx scores for mean GI50 are all large positive
values. TheZx scores for the CSA compounds most closely
resemble those of the HF active compounds. The significance
levels of these differences are shown in Figure 6b (see Figure
6 caption for details). All parameters are significantly different
between the HF active and inactive compound sets and an
average screened compound. There is no significant difference,
however, between the descriptor values of the CSA compounds
and the HF active compounds, except that the latter has lower
MW and ALogP and shows slightly higher potency.

Figure 7a depicts theZx scores for compounds in the nine
GI50 SOM regions together with the HF active and inactive and
the CSA compound sets. Close resemblance in descriptor
patterns can be seen between the HF active compounds, the
CSA compounds, and the compounds in SOM region M, as
well as between the HF inactive compounds and compounds in
region Q. This again shows that even though potency or GI50

is a good predictor of HF activity, it is certainly not the sole
determinant, as the compounds in Q are clearly not the least
potent, yet they most resemble HF inactive compounds.

Figure 6. Comparison of the CSA, HF active (HF scoreg20), and inactive (HF scoree2) compound sets in terms of molecular descriptors and
mean GI50. For each compound set, the average descriptor values are calculated; each descriptor is then normalized using the descriptor values for
all screened compounds as reference points (Zx ) (meanx - meanref)/SDref, whereZx is the normalized value of a descriptor for compound setx,
x is the compound set of interest, and ref is the set of all screened compounds).Zx then indicates the degree of deviation for compound setx from
an average screened compound. A compound set with positiveZx scores has above average descriptor values and a compound set with negativeZx

scores has below average descriptor values. (a) TheZx scores, wherex ) HF active, HF inactive, and CSA, for ALogP, Lipinski score, MW, HBA,
HBD, PAC, RB, PSA, PMW, LSUFC, and mean GI50. The HF active compounds have above average values for all structural descriptors (except
for ALogP), and the HF inactive compounds show below average values for all structural descriptors. All three compound sets show higher potency
than an average screened compound. TheZx scores for the CSA compounds most closely resemble those of the HF active compounds. (b) The
significance levels of differences in descriptor values between compound sets.t-Tests are performed to compare the descriptor values between HF
active and inactive, HF active and an average screened compound, and HF active and the CSA compound sets. The histograms are-log(P/0.05)
values calculated for each descriptor, such that a positive value indicates a statistical significance atp < 0.05. All descriptors are significantly
different between the HF active and inactive compound sets and an average screened compound. No significant difference is found between the
descriptor values of the CSA compounds and the HF active compounds, except that the latter has lower MW and ALogP and shows slightly higher
potency.
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Moreover, even the HF inactive compounds have significantly
above average mean GI50 values. The relationship between the

compound groups and each SOM region is better illustrated in
terms of correlations in Figure 7b. Correlations are calculated
for the parameterZx scores of each compound group with those
of each SOM region. A large positiver with a SOM region
indicates a close similarity of the compounds inx and the
compounds in that SOM region in terms of chemical properties
and potency. A large negativer, on the other hand, indicates
incompatibility. Since SOM regions can be used as surrogates
for compound MOAs, the relationships illustrated in Figure 7b
can be viewed as a way to roughly estimate the MOA of a
compound set. The idea of predicting MOA based solely on
compound structural descriptors (GI50 can be used as an
additional descriptor but is not necessary) via the SOM is
intriguing. The difference in the correlation patterns of the
different compound sets with the SOM reveals differences in
their MOAs. The compounds in the SOM region that most
strongly correlate with a compound set in terms of structural
descriptors are also most likely to share their primary MOA
with the compound set. This method can be expanded to assess
individual compounds.

Figure 7b can be used alternatively to find new HF active
compounds, which are most likely to reside in the SOM regions
that have higher “affinity” for the HF active compounds than
the HF inactive compounds. Therefore, even though regions S,
M, Q, and V all have positive correlations with HF active
compounds, the Q-region has an even stronger positive cor-
relation with HF inactive compounds, which leaves regions S,
M, and V with selective affinity for HF active compounds.
Conversely, the regions to avoid would be N, Q, and possibly
R, where HF inactive compounds are likely to be prevalent.
The average predicted HF activities for compounds in each SOM
region, using the prediction model built from molecular descrip-
tors and mean GI50 (Table 4), are shown in Figure 7c. Regions
M and S have the highest predicted HF activity, and the rest of
the regions show comparable activities, with the R-region
compounds predicted to have the lowest activities. The results
are consistent with those indicated by Figure 7b. The CSA
compounds show clear promise, since they are selected as target
specific compounds and are also predicted to be potent and
active in the HF assay. Their structural descriptors have the
strongest positive correlations with regions M and S, which are
the two regions predicted to have the best HF activity.

Table 6 lists a few examples of the CSA compound classes
derived from our integrated structure-activity analysis, their
predicted and measured mean GI50 values and HF scores, and
the SOM regions where these compounds are located. The
activity values are averaged over each compound class. The
predicted activity values agree well with the measured values
for most of these compound classes. The compound classes
clustered in the antimitotic (M) and nucleic acid synthesis and
metabolism (S) regions show clearly above average GI50 and
HF scores. Noteworthy is that these compound classes have
included several standard anticancer agents, such as the anti-
mitotic agents colchicines; the DNA antimetabolites Ara-C,
5-HP, and methotrexate; and the topoisomerase inhibitors
camptothecin and daunorubicin. Furthermore, our procedure also
finds adaphostin and its analogues as a CSA compound class,
which has been actively pursued as p210bcr-abl protein tyrosine
kinase inhibitors that induce apoptosis in human leukemia
cells.35-37 Identified as another CSA class are the acetogenins,
which are known inhibitors of mitochondrial complex I and
oxidative phosphorylation.38,39These results indicate that other
novel CSA compound classes discovered by our procedure may
also be interesting agents that warrant further investigation.

Figure 7. Comparison of the CSA, HF active (HF scoreg20) and
inactive (HF scoree2) compound sets and compounds clustered in
each SOM region in terms of molecular descriptors, mean GI50, and
HF activity. (a)Zx scores (see Figure 6 caption for details) for com-
pounds in the nine GI50 SOM regions together with the HF active and
inactive and the CSA compound sets. Close resemblance in descriptor
patterns can be seen between the HF active compounds, the CSA com-
pounds, and the compounds in SOM region M and between the HF
inactive compounds and compounds in region Q. (b) DescriptorZx score
(see Figure 6 caption for details) correlations between each compound
set and the nine SOM regions. A large positiver with a SOM region
indicates a close similarity between a compound set and the compounds
in that SOM region in terms of chemical properties and potency. A
large negativer indicates incompatibility. These relationships can be
used as a way to roughly estimate the MOA of a compound set. HF
active compounds are most likely to reside in the SOM regions that
have higher “affinity” for the HF active compounds than the HF inactive
compounds. (c) HF activity and known drug content in the nine SOM
regions. Top histograms: Average predicted HF activity for each SOM
region. Regions M and S have the highest predicted HF activity, and
the rest of the regions show comparable activities. Bottom histograms:
Distribution of a set of known anticancer drugs collected by Leadscope
on the SOM. The S-region has the most known drugs, and the other
drugs are distributed fairly evenly across the other regions. The
distribution of the known drugs shows a good correlation with their
predicted HF activity (r ) 0.61).
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These compounds are freely available upon request to our fellow
cancer researchers who are interested in testing them.

Discussion

This study attempts to achieve a global assessment of
compounds tested in the NCI60 in vitro anticancer screen in
terms of molecular structure, biological activity, target specific-
ity, and MOA and to determine the feasibility of deriving valid
statistical models from structural/physicochemical descriptors
to predict compound potency, as represented by mean GI50 and
in vivo HF activity. Significant differences are observed in the
distributions of common physicochemical descriptors between
the active (mean GI50 g 7) and inactive (mean GI50 e 4)
screened compounds. The active compound set has higher values
in every structural descriptor than the inactive compound set.
The structural descriptor LSUFC, as a measure of molecular
complexity, shows the greatest difference between the active
and inactive compound sets, followed by parent atom count and
molecular weight, and the number of rotatable bonds shows the
least difference. Molecular weight has been observed, within

the NCI’s set of 166 standard anticancer agents, to contribute
significantly to cancer cell growth inhibitory activities.29 Mo-
lecular weight is directly proportional to the size of a molecule,
and most of the other descriptors (e.g., PAC, HBA, HBD, RB,
PSA) are also size-related. It is then not surprising that when
one of these parameters is correlated with activity, the others
will be more or less correlated as well. Our analysis, done from
a global perspective, reveals that compounds with large
structural/physicochemical descriptor values are more likely to
be active or potent in cancer cell growth inhibition. This in turn
indicates that it is not molecular weight per se, but rather
molecule size and structural complexity in general, that con-
tribute significantly to the activity or potency of a compound.
The concept of molecular complexity has been shown to be
valuable to achieve biological activity in pharmaceutical
research.40 However, complexity needs to be balanced with other
molecular properties to avoid pharmacokinetic problems inherent
in selecting large compounds. As we have observed early on in
this study and will discuss next in the text, structure-activity

Table 6. Examples of Several CSA Compound Classes Derived from Our Integrated Structure-Activity Analysisa

a The table lists the representative structural motif for each compound class, the predicted and measured mean GI50 values and HF scores averaged over
each compound class, and the SOM regions where these compounds are located. The compound classes clustered in the antimitotic (M) and nucleic acid
synthesis and metabolism (S) regions show clearly above average GI50 and HF scores. Noteworthy is that these compound classes include several standard
anticancer agents and known inhibitors of the protein tyrosine kinase p210bcr-abl and mitochondrial complex I.
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relationships are a collective consequence of specific compound
features and MOA.

SOM clustering of GI50 response patterns segregates com-
pounds into groups that share a similar putative MOA. As a
way of relating molecular features to MOA, we have examined
the structure-activity relationship for compounds within each
SOM region. Consistent with earlier results, molecule size and
complexity are found to contribute positively to compound
potency in most cases, i.e., most physicochemical/structural
descriptors are positively correlated with mean GI50, while
ALogP and RB show the largest variations in different SOM
regions. However, compounds clustered in the Q-region, which
are characterized by unique chemical features, exhibit structure-
activity behaviors that are distinct from compounds in other
regions, such that several size-related parameters (e.g., LSFC,
HBA, HBD, PSA) are found to be negatively correlated with
mean GI50.18 This exception to the general observation that large
and more complex molecules are more potent is an indication
that the manner in which physicochemical/structural descriptors
determine compound activity is, at least in part, dependent on
compound type and/or MOA.

Inspired by our observations that many molecular descriptors
show good correlations with compound activity, specifically,
mean GI50, we have built linear regression models, which are
shown to be statistically significant and valid, to predict
compound activity (GI50 and HF activity) with suitable com-
binations of molecular descriptors. Efforts attempting to use
molecular features as predictors of biological activity are not
unprecedented and have shown success in small, focused data
sets.41 Our models built from large-scale data sets are proposed
as prescreening tools to virtually filter compounds in large
databases and select a smaller set with good predicted activity
for subsequent testing and validation. The fact that compound
activity can be predicted with reasonable accuracy, even on a
global scale, reaffirms the concept of chemistry determining
activity. One has to keep in mind, however, that the models,
on average, can only explain about 20% of the variability in
the data; thus, a large percentage of variance in activity still
cannot be accounted for solely by the parameters used.
Nevertheless, if the goal is to preselect the most potentially
active compounds in a large database, the proposed models can
be used effectively to eliminate most of the inactive compounds
(other active compounds may be missed as a risk, since, when
the model is highly selective, it is less sensitive).

The HF activity prediction model built with GI50 as an
additional predictor is shown to be only slightly superior to the
one built without, indicating that GI50 is a good, but not the
sole, predictor of HF activity. Thus, molecular descriptors other
than GI50 also contribute significantly to the HF activity of a
compound, and GI50 may be replaced by other descriptors
without a significant loss in the reliability and predictive power
of the model. Another interesting observation is the repeated
occurrences of structural feature count and ADME properties
in the models as the most significant predictors of compound
activity. Since these models are built on a grand scale using
almost all available data, and general potency measures such
as GI50 and HF activity are modeled without going into the
details of specific target-oriented activity, the subtleties involving
particular compound features will not be reflected but rather
eliminated by the model, and only properties that are important
for a compound’s biological activity in general are thus revealed,
which could be expected to include such properties as general
molecular complexity and ADME properties.

Another property of common interest is target specificity. One
way to measure target specificity is to determine whether a set
of structurally similar compounds shares the same targets or
MOA, as gauged by the strength of correlations between their
differential GI50 response patterns. Compound potency (mean
GI50) is thus found to positively correlate with target specificity
and is also the most significantly correlated parameter. Other
physicochemical/structural descriptors such as molecular weight,
feature count, parent atom count, rotatable bonds, hydrogen bond
acceptors, and polar surface area also show some degree of
correlation with target specificity, though much weaker. Reduc-
tion in molecular size and complexity is known to reduce the
specificity and activity of natural products;42 positive contribu-
tion from these molecular features to both specificity and
potency is, therefore, expected. However, a direct correlation
between potency and specificity, which is also exceedingly
stronger than the correlations of specificity with other param-
eters, is very intriguing because this implies that it is specific
targeting, rather than promiscuous poisoning, that gives rise to
potency. In addition, a positive correlation, though not as strong,
is also observed between compound specificity and in vivo HF
activity. Compounds that are both potent and target specific are
generally of great interest. Our observation that target specific
compounds are more likely to be potent, or vice versa, has led
us to the development of a strategy to exploit this relationship
for mining novel anticancer agents. The combined filtering of
our structural (DYFP) and activity (GI50) SOMs reveals a set
of compounds (the CSA set), the structurally similar subsets of
which also show activity similarity (i.e., target specificity). As
expected, these compounds show significantly higher potency
and are predicted to be significantly more active in the HF assay
than an average screened compound.

Finally, as a way to link compound activity to MOA via
molecular features, we have compared the CSA compounds and
the HF active and inactive compounds with compounds clustered
in different SOM regions, i.e., compounds of different MOAs,
in terms of physicochemical/structural descriptors and GI50.
Consistent with earlier findings, the HF active compounds
appear to be larger, structurally more complex, and more potent,
on average, than the HF inactive compounds. The CSA
compounds exhibit characteristics very similar to the HF active
compounds property-wise. Moreover, compounds clustered in
SOM regions M, S, and V show higher “affinity” (stronger
positive parameter correlations) for the HF active than the HF
inactive compounds. Conversely, compounds in regions N, Q,
and R seem to have selective affinity for HF inactive com-
pounds. As a side note, even though our descriptor analysis
identifies regions M and S as the most likely to contain potent
and HF active compounds, this does not necessarily imply that
these compounds will be absent in other SOM regions. To the
contrary, the distribution of the set of known anticancer drugs
collected by Leadscope on the SOM (Figure 7c, bottom
histograms), plotted together with the average predicted HF
activities for each SOM region (Figure 7c, top histograms),
clearly shows that despite region S having the most known
drugs, the other drugs are distributed fairly evenly across the
other regions. The distribution of these drugs across the SOM
regions actually has a good correlation with their predicted HF
activity (r ) 0.61), since M and S also have the highest predicted
HF activity, whereas the rest of the regions show comparable
activities.

Since SOM regions are indicative of compound MOAs, the
parameter correlations between a compound set and each SOM
region can then be used to predict the MOAs of that compound
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set. That is, the putative MOA of a compound may be predicted
based solely on molecular descriptors, with the optional use of
GI50 as an additional parameter, via the SOM. The difference
in the correlation patterns of the different compound sets with
the SOM reveals differences in their MOAs. The primary MOA
of a compound set is most likely to be similar to compounds in
the SOM region with which it has the strongest physicochemical/
structural parameter correlations.

Conclusions

In summary, this study presents a global analysis of com-
pounds tested in the NCI60 in vitro anticancer screen in terms
of molecular structure, biological activity (GI50 and in vivo HF
activity), target specificity, and MOA, through the combined
use of structural/physicochemical descriptors and the SOM. Our
analysis finds that molecule size and structural complexity in
general, contribute significantly to compound potency in cancer
cell growth inhibition and HF activity. We have examined the
structure-activity relationship for compounds within each GI50

SOM region to relate molecular features to MOA. Molecular
size and complexity are found to positively contribute to
compound potency in most cases, with exception occurring for
compounds having distinct features and MOA. We have built
linear regression models that are shown to be statistically
significant and valid, which can be used as prescreening tools
to filter in silico compounds in large databases to effectively
eliminate most of the inactive compounds and select a smaller
set with good predicted activity for subsequent testing and
validation. The concept of chemistry determining activity is
reaffirmed by the fact that compound activity is globally
predictable with reasonable accuracy. Our results show that GI50

is a good, but not the sole, predictor of HF activity. A direct
correlation is also found between potency and specificity,
indicating that specific targeting, rather than promiscuous
poisoning, gives rise to potency. We have proposed a strategy
to exploit this relationship for mining novel anticancer candi-
dates. Finally, we have shown that correlations between
compounds and SOM regions via molecular descriptors can be
used to predict compound MOAs.

Methods

Data Modeling. The molecular descriptor set is obtained by
calculating the 26 families (except for Daylight search) of fast
descriptors, which include 214 descriptors, in the Cerius2 v. 4.9
molecular modeling software from Accelrys Inc. (San Diego,
CA). We also included the Leadscope unique feature count
(LSUFC), calculated by counting the number of unique struc-
tural features defined by Leadscope present in a molecule, as
an additional parameter to cover the structural complexity aspect
of the molecules, resulting in a total of 215 independent variables
(descriptors) and one dependent variable (activity), to be
modeled. One model is built with mean GI50 as the dependent
variable to be predicted using about 27 000 compounds with
assigned 2D structures and GI50 data. Using a set of 2847 out
of the 3119 compounds tested in the HF assay with known
structures, the HF activity data is modeled both with and without
mean GI50 as an additional independent variable. To build each
model, compounds are randomly divided into two sets, one set
used for training and the other one for testing. The data are
modeled using a multistep linear regression method available
in the SAS statistical software (The SAS System V8, SAS
Institute Inc., Cary, NC). Additional modeling algorithms such
as PLS using either NIPALS or SVD to compute extracted PLS
factors are also tested and the results do not seem to be superior.

In the final model, each parameter estimate is associated with
a p-value, which indicates the statistical significance of that
parameter. A parameter estimate with a smallerp-value has less
error and is therefore more accurate. Only variables that are
significant at thep < 0.15 level are kept in the model.

Model Validation and Predictive Power.The model is built
using only compounds in the training data set, where a set of
descriptors that significantly contribute to activity is derived
and their weights estimated. The activity value for each
compound is then computed using the set of significant
descriptor values and weights from the model, yielding the
predicted values. The model is then cross-validated by predicting
the activity values for the compounds in the testing data set
using the set of descriptors derived from the training set.
Correlations between the measured and predicted activity values
are calculated for both the training and testing sets and
compared. Compounds are sorted according to their predicted
activity values and divided into 1000 groups for the GI50 model
and 100 groups for the HF activity prediction models. The group
averages are plotted against the measured activity values. This
approach is used to reduce noise and observe global trends. For
the GI50 prediction model (Figure 4a), the grouped training set
yields a very goodr2 of 0.77 and ther2 ) 0.67 obtained for the
testing set, i.e., the cross-validationr2, is only slightly lower.
For the HF activity prediction model with GI50 as an additional
predictor (Figure 5a), the grouped training set yields anr2 of
0.78, and the cross-validationr2 of 0.61, obtained for the testing
set, is lower but still reasonably good. Finally, for the GI50 free
HF activity prediction model, the grouped training setr2 is 0.68
and the cross-validationr2 is 0.49.

Randomization tests are performed where the dependent
variable, i.e., the activity data, is randomly permutated 100 times
and a new model is built each time using the permutated data.
The model correlation coefficient,r2, which represents the
amount of variability in activity that can be explained by the
descriptors, is used as a measure of model quality. The model
is considered statistically valid and predictive if the real model
r2 is significantly larger than those of the models generated from
the randomly permutated data sets (p < 0.05). The modelr2,
mean, and SD of ther2 values for 100 random models obtained
for the GI50 prediction model and the HF activity models with
and without GI50 as an additional predictor are listed in Table
7. The r2 values for all three models are larger than the
maximum r2 values generated from the random permutation
tests; therefore, all three models are statistically significant at
p < 0.01.

Another validation method used to evaluate the predictive
power of a model is the receiver operating characteristic (ROC)
curve, which is a plot of sensitivity versus (1- specificity).
Sensitivity, defined as the proportion of active compounds that
are predicted as active [TP/(TP+ FN)], describes how well a
model identifies active compounds. Similarly, specificity is
defined as the proportion of inactive compounds that are
predicted as inactive [TN/(TN+ FP)] and describes how well
a model identifies inactive compounds. Predicted activities are
computed for all compounds using the model, and the number
of compounds that fall into each of the four categories (TP,

Table 7. Model r2 and Mean and SD of ther2 values for 100 Random
Models Obtained for the GI50 Prediction Model and the HF Activity
Models with and without GI50

model r2 mean randomr2 SD

GI50 0.22 2.78× 10-3 6.50× 10-4

HF (with GI50) 0.24 0.025 5.77× 10-3

HF (without GI50) 0.19 0.024 5.92× 10-3

Structure, Anticancer ActiVity and Mechanism of Action Journal of Medicinal Chemistry, 2006, Vol. 49, No. 61977



FP, TN, and FN) at different real activity levels are counted
and the sensitivity and specificity values calculated. A good
predictive model yields the greatest number of true positives
with the least number of false positives, resulting in a ROC
curve that tends upward while moving from right to left. The
activity cutoff level that gives the maximum sensitivity and
specificity, when the area under the ROC curve will be the
maximum, will be the best cutoff to use when applying the
model in compound selection.
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